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Now, using a well-known addition theorem for the theta functions,

K’H(M)H,(M)H(u) H,(It)
(11).xdl – ~ = &02(o)H(JI + U)H(M – ~)

so that

~N(M .+ Ii) – HN(M – W) ___ ~lz)——
P,v($)/(a@ – x’) = c

H(U) If I(U) Hn-’(M + U) W-’(.W – u)

where C is a real constant. Denoting the fraction on the right by

F(u), the argument will be complete when we show that the function,

j(~), defined by F(u) together with (6), is an even polYnomial in x
with real coefficients.

That ~(x) is a polynomial of degree N– 2 is evident from the fol-

lowing.

1) j(x) is single valued.

2) ~(x) is analytic everywhere except at the point of infinity.

3) The singularity of ~(x) at infinity is a pole of order N –2,

for it is well known that an analytic function whose only singularity

is a pole at infinity of order m is a polynomial of degree m. Then, to

show that it is an even polynomial with real coefficients, it is suffi-

cient to show that it is even and real on the portion of the real axis

between –xl and +x1, by the principle of analytic continuation.

Now f(x) is single valued because F(u) is doubly periodic in u

with the same periodicity rectangle that x has as a function of u. So

that, although to each value of x there corresponds an infinite num-

ber of values of u, each in turn gives the same value of F(a). To show

that F(u) has the required property is a formal matter; and the

reader is referred to [1]. One simply replaces u by u +2K and

u +2jK’, in turn, in the defining equations and shows that

F(u) = F(U + 2K) = F(M + 23X’) (13)

making use of the fact that NM=K.

By the function of a function theorem for analytic functions, ~(x)

is analytic except at the singularities of F(U) as a function of u and

the singularities of u as function of x. Both of these sets of singularities

are readily seen’ to be finite in number. It follows then, from a well-

known theorem for single-valued analytic functions with a finite

number of singularities, that ~(x) cannot be bounded in the neighbor-

hood of any of its singularities. Hence, in searching for the singular-

ities of ~(x), we need not concern ourselves with the critical points of

(6) since~(x) can be unbounded only when F(u) is unbounded. More-

over, because of the periodicity of F(u), we may limit the search for

singular points to values of u in a periodicity rectangle determined by

(+ K, fjK’). NOW, since II(u) is bounded in the finite plane, in-

finities of F(u) occur only at zeros of its denominator. The zeros of

H(u) and EI1(u) are simple and occur at u = O and u = –K, but it is

readily seen that they are cancelled by zeros of the numerator of F(u).

Thus the only singularities of F(u) in the periodicity rectangle occur

at u = ~ M. Both of these values correspond to x = m and we con-

clude that ~(x) is analytic in the entire plane except at the point of

infinity.

It is a formal matter to show that ~(~) /xN-Z approaches a finite

limit as x+@. Thus the only singularity of ~(x) is a pole of order

N–2 at infinity.

Finally, from the mapping of the x plane (given in Fig. 1) and

the evaluation of PN (x) as Im [yn ] for values of x between —xl and

+x1, it follows the P~(x) is a real odd function of x on this line seg-

ment. Thus j(x) is a real even polynomial for values of x on this line

segment.
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Computer Program Descriptions

Computer Solution of Transient and Time Domain

Thin-Wire Antenna Problems

PURPOSE : swnw is a general purpose computer program
which analyzes the transient and time domain
electromagnetic behavior of straight-wire scat-
terers and antennas (both transmitting and receiv-
ing),

LANGUAGE : FORTRAN.

AUTHORS : Alethia M. Auckenthaler and C. Leonard Bennett.

Sperry Rand Research Center, Sudbury, Mass.

01776.

AVAILABILITY: Asls-NAps Document No. NAPS-01541,

DESCRIPTION: A general purpose computer program that analyzes

the transient and time domain electromagnetic

behavior of transmitting, receiving, and scattering straight-wire

antennas is presenter. The program allows an arbitrary number of
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transmit or receive points, each with arbitrary source or load resis-

tances and arbitrary distributed resistive loading along the wire
length. The program also permits the computation of the far zone
normalized field in arbitrary directions. The flexibility in both the
input and output of this program and its applicability to the general

time varying case allows the solution of a wide range of practical engi-
neering problems.

The straight-wire scattering and antenna problem which is illus-
trated in Fig. 1 consists of a straight wire located on the x axis with

some excitation. For the case of the scattering or receiving antenna

problem the excitation is the x component of the incident wave E
which makes an angle of @ with the plane perpendicular to the x axis.
For the case of the transmitting antenna problem the excitation is a

voltage generator with a source resistance R~. These excitations
produce currents 1(x) along the wire which in turn produce a far
zone field H’ in the ~’ direction.

The technique used to solve this wire scattering problem [1], [2]
is a specialization of the integral equation technique used in the time
domain solution of the more general problem of scattering by sur-
faces [3]. Since the wire is assumed to be thin (e.g., the wire radius is
much less than the width of an incident Gaussian shaped pulse), the

wire current flows only in the axial direction and the more compli-

cated surface integral equation reduces to a single space time scalar
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Fig. 1. Geometry of thin-wire antenna as scatterer, receiver, or radiator.

integro-differential equation for the wire currents. The form of this

equation is similar to a one-dimensional wave equation which is
then solved numerically on a digital computer by marching on in

time. Once the currents have been found the far zone fields they
produce are also computed numerically on the digital computer.

The input to the computer program is read in six data groups
which control

1) type of problem to be analyzed;
2) wire geometry;

3) excitation;

4) wire loading;

5) far zone field computation;
6) output data options.

Instructions for preparing the data are presented to the user in the

comment cards at the beginning of the main program. In addition,
all input data are checked for maximum dimension allowances and
reset if necessary. The units of time are light meters (one light meter
is the time it takes a wave moving at the velocity of light to travel
1 m).

The incident plane wave for the case of the scattering or receive
antenna problem is a Gaussian shaped pulse:

d~ an
E~(*, t) = – — —–exp [—anz(t + x sin fP)2]. (1)

~ dlr

Contributors

Mieko Furukawa was born in Mie-pref., Ja-
pan, on September 9, 1944. She graduated
from Ochanomizu Women’s University, To-
kyo, Japan (Department of Physics, Faculty
of Science), in 1967.

Since April 1967 she has been with the De-
partment of Electronic Engineering, Univer-
sity of Tokyo, Tokyo, Japan, where she

worked on microwave semiconductor devices
until March 1970.

Miss Furukawa is a member of the
Institute of Electronics and Communication Engineers of

Japan.

Note that the peak of this pulse reaches the origin at t = O. The gen-
erator voltage used for the case of the radiating antenna is a smoothed

step waveform given by

v,(t) = j- ‘ IN(O,t’)dt’. (2)

The width of the pulse in (1) or the rise time of the step in (2) is

approxlmatel y 4/a~ light meters.
The program prints out the input data, the wire currents that are

computed at each sample point in space time, and the far zone
magnetic field normalized by the distance from the origin at each
point in direction time.

The program has been run on both Univac 1108 and IBM 360
computers and requires approximately 43000 words. Execution time

on a Univac 1108 is found to be approximately

kNwNz@. + N,)

where

NW number of wire sample points (NXW);

N, number of far field directions (NP);
NT number of time sample points;

k 1.6x10–’ S.

Good agreement is fouud when the program results are compared
with both experimental measurements and results computed by
taking the inverse Fourier transform of frequency domain solutions.

This program computes the smoothed impulse response or the

smoothed step response of these scattering and antenna problems.

It should be pointed out that the response due to any time varying
waveform can be computed from the impulse response by a simple
convolution operation. In particular, the Fourier transform of the
impulse response yields the entire frequency response directly. Thus

a single time domain calculation for the impulse respo,nse solves a
particular scattering or antenna problem for all excitations.
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